echar el punto - Definition. Was ist echar el punto
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist echar el punto - definition

Punto al infinito; Punto impropio; Punto en el infinito
  • '''fig.1''': La "'''recta proyectiva real''' (ℝ'''''P'''''<sup>1</sup>)" con el punto del infinito <math>\textstyle \infty</math>, genera una curva cerrada

echar el punto      
fr.
Mar. Situar o colocar en la carta de marear el paraje en que se considera estar la nave.
Punto tipográfico         
  • Escala de puntos tipográficos de [[Pierre Simon Fournier]] en su libro Manuel Typographique, 1764
UNIDAD DE MEDIDA EN TIPOGRAFÍA
Punto tipografico; Punto (tipografía); Punto (tipografia)
El punto tipográfico, es la unidad de medida más pequeña utilizada en tipografía y composición de publicaciones, a partir de la cual se dimensiona todo lo relacionado con el mundo tipográfico. Su símbolo es pt.
Punto del infinito         
El punto del infinito, punto en el infinito o punto impropio es una entidad topológica y geométrica que se introduce a modo de cierre o frontera infinita del conjunto de los números reales. Cuando se añade a la recta real genera una curva cerrada (véase fig.

Wikipedia

Punto del infinito

El punto del infinito, punto en el infinito o punto impropio es una entidad topológica y geométrica que se introduce a modo de cierre o frontera infinita del conjunto de los números reales. Cuando se añade a la recta real genera una curva cerrada (véase fig.1) conocida como recta proyectiva real, R P 1 {\displaystyle \mathbb {R} P^{1}} , que no es equivalente a la recta real ampliada, que tiene dos puntos distintos en el infinito. Esta condición se expresa de la forma siguiente:

R ^ = R { } {\displaystyle {\hat {\mathbb {R} }}=\mathbb {R} \cup \{\infty \}}

En el caso del plano afín (incluido el espacio bidimensional), hay un punto ideal para cada haz de paralelas del plano. La unión de estos puntos produce un plano proyectivo, en el que no se puede distinguir ningún punto, si se "olvida" qué puntos se agregaron. Esto es válido para una geometría sobre cualquier cuerpo y, de manera más general, sobre cualquier anillo de división.[1]

Was ist echar el punto - Definition